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Absorbing Boundary Conditions for the Finite-Difference
Approximation of the Time-Domain
Electromagnetic-Field Equations

GERRIT MUR

Abstract—When time-domain electromagnetic-field equations are
solved using finite-difference techniques in unbounded space, there
must be a method limiting the domain in which the field is computed.
This is achieved by truncating the mesh and using absorbing
boundary conditions at its artificial boundaries to simulate the
unbounded surroundings. This paper presents highly absorbing
boundary conditions for electromagnetic-field equations that can be
used for both two- and three-dimensional configurations. Numerical
results are given that clearly exhibit the accuracy and limits of
applicability of highly absorbing boundary conditions. A simplified,
but equally accurate, absorbing condition is derived for two-
dimensional time-domain electromagnetic-field problems.

Key Words—Electromagnetic-field equations, time domain, finite-
difference approximation, absorbing boundary conditions.

I. INTRODUCTION

HE THREE-DIMENSIONAL finite-difference formulation
[1] of time-domain electromagnetic-field problems is a
convenient tool for solving scattering problems. The main
advantages of such a method are that it can be easily applied
to (infinitely) conducting obstacles and/or to dielectric and
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magnetic obstacles which can be either homogeneous or in-
homogeneous. The obstacles can be of arbitrary shape. Fur-
thermore, finite-difference techniques provide a very efficient
way of solving Maxwell’s equations [2]. In a finitedifference
method, a space-time mesh is introduced and Maxwell’s
equations are replaced by a system of finite-difference equa-
tions on the mesh. The difficulty encountered when trying to
solve field problems in this way arises from the fact that scat-
tering problems are usually open problems, i.e., the domain in

‘which the field has to be computed is unbounded. Since no

computer can store an unlimited amount of data, a method
has to ‘be used for limiting the domain in which the field is
computed. This is done by using a mesh of limited size, but
one large enough to fully contain the obstacle, and by using
a boundary condition on the outer surface of the mesh such
that the unbounded surr()undiﬁg is modeled as accurately as
possible. Boundary conditions of this type are called absorbing
boundary conditions. For finite-difference approximations of
Maxwell’s equations, absorbing boundary conditions have been
described by Taylor et al. [3], who use a simple extrapolation
method, and by Taflove and Brodwin [4], who simulate the
outgoing waves and use an averaging process in an attempt to
account for all possible angles of propagation of the outgoing
waves. An alternative method, suggested by Taflove [5], is
to introduce losses in the region that surrounds the structure
to be modeled, thus absorbing both the outgoing waves and
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the waves that are reflected by the boundaries of the mesh.
Numerical experiments, however, have shown that, in order
to obtain accurate results, a relatively thick conducting layer is
required which makes this way of absorbing the outgoing
waves inefficient. Merewether [6] and Kunz and Lee [7] use
the radiation condition at large distances from the center of
the scatterer to obtain an absorbing boundary condition.

The absorbing boundary conditions mentioned above,
although useful as first approximations, have the disadvantage
of causing considerable reflections when the fields near the
~ boundary of the mesh do not propagate in a specific direction
(either the direction normal to the boundary of the mesh or
the radial direction from the center of the obstacle). Further-
more, no general theory for improving upon these approxima-
tions is available. In this paper, a potentially superior method
to those given above is derived for both the two- and three-
dimensional electromagnetic-field equations; it is similar to
the scalar derivation of Engquist and Majda [8]. The first
approximation in the sense of this method appears to be com-
parable to those given above. The second and higher approxi-
mations are less subject to reflection problems, especially
for fields grazing the outer boundary, making them highly
absorbing boundary conditions. For two-dimensional fields,
a simplified, but equally accurate, absorbing boundary condi-
tion will be derived. Numerical results will be presented to
elucidate the usefulness of highly absorbing boundary con-
ditions.

II. FINITE-DIFFERENCE APPROXIMATION OF
MAXWELL’S EQUATIONS

Since, in this paper; we do not concern ourselves with
obstacles or inhomogeneities but with the homogeneous region
that surrounds them, we can, without loss of generality,
confine our attention to Maxwell’s equations for a vacuum
region. In rectangular Cartesian coordinates we have

(12)
(1b)

Moo H =—VXE
€00 =V XH

where € and ug denote the permittivity and the permeability
of a vacuum, respectively. We now introduce a finite-differ-
ence approximation of (1) and, following Yee’s notation [1],
we denote a mesh point as

G,7,k)=(5,75,k8)

where § = §x = §y = 8z is the space increment, and any func-
tion of space and time as

F"(i,j, k)= F@8,j5, k6, ndt)

where 8¢ is the time increment. By positioning the field com-
ponents of E and H on the mesh in the way that is depicted in
Fig. 1 and evaluating E and H at alternate half-time steps, Yee
obtained finite-difference expressions that have a local truca-
tion error of the second order in all increments. The finite-
difference approximation for the x-component of (la) and
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(i,j.k+1)

Fig. 1. The positions of the field components in Yee’s mesh.

(1b) now reads

H."™U2G i+ 1/2, k+1/2)
=H" V2,7 +1/2,k + 1/2) — (5t/ue5)
cEG T+ Lk 12)—EG,5 k+ 1/2)
—Ey"G,j+1/2,k+ 1)+ E,"G,j + 1/2, k)
EG+1/2,7,k)

(22)

=E G+ 1/2,7, k) + (5t/epd)
cH,V2GE+1/2,7+1)2,k)
—H,"2G+1/2,7—1/2,k)
—H,""YV2G+1/2,7,k+1/2)
+H,U2G 4 1/2,7, k- 1/2). (2b)

Similar finite-difference approximations for the y- and z-com-
ponents of (1) can easily be derived. The condition for stabil-
ity of (2) is
8t <8/(covV/3) 3)
where co = (€gtip)” "/ * denotes the speed of light in vacuo.
For a two-dimensional problem, we use only a single plane

in the mesh and consequently (2) is considerably simplified.
The condition for stability then reads

1/2

81 <58/(coV/2). @

In each of the coordinate directions, the mesh is truncated
by enclosing it between two planes that are normal to the
relevant coordinate axis and pass through mesh points (i,7, k),
i,j, k integer. We then observe from Fig. 1 that all components
of the electricfield vector E occurring in (2) applied to a
particular point in the boundary of the mesh are tangential
to this boundary while the relevant components of the mag-
netic-field vector H are normal to it. The latter field com-
ponents can be evaluated by using the relevant finite-dif-
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ference equation. The E-field components, however, cannot
be evaluated in this way since this would require H-field
components that are outside the mesh. In the next section, we
shall describe absorbing boundary conditions that can be used
for computing these E-field components. For absorbing
boundary conditions, it is assumed that the fields near the
boundary are outgoing waves and, therefore, they can be
applied to only scattered fields, i.e., those that find their origin
somewhere near the center of the mesh. Consequently, inci-
dent fields, if present on the mesh, should be subtracted from
the total field near the boundary of the mesh. Finally, we note
that, upon elimination of H from (2), we obtain

(35 +0,% +23,> —co 20 ) E= 0 ®)
ie., each component of the electric field independently
satisfies the three-dimensional wave equation.

III. ABSORBING BOUNDARY CONDITIONS

In the previous section, we saw that absorbing boundary
conditions for Maxwell’s equations on the mesh depicted in
Fig. 1 require absorbing boundary conditions for the three
components of the electric field only. We also saw that each
of these field components satisfies the three-dimensional
scalar wave equation

(0,2 +9,2+03,2 —¢p 23, )W=0. (6)
In this section, we will present the necessary boundary condi-
tions by using the method that is described in detail by Engquist
and Majda [8]. We shall assume, without loss of generality,
that the mesh is located in the region 0 < x, and give boundary
conditions for the plane x = 0.

A space-time plane-wave constituent traveling in the direc-
tion of decrehsing x, with inverse velocity components s,
s, and s, such that sx2 + sy2 + 5,2 =¢o "2, can be written as

W=Re (Wt + (o™ —sy2 —5,2)/?x
+ 5,y +5,2)) ‘

with Re(co ™2 — sy2 — 5,2 /2 > 0. For this outgoing wave,
the first-order boundary condition

Q)

(Ox—co™ ! a- (Cosy)2 — (cos2)? )llzat)w,lx=0 =0 (8
would, for fixed values of s, and s,, determine a W on the
outer surface that is consistent with an outgoing wave, ie., it
is absorbed. Since we do not know the angle of incidence of
the wave approaching x = 0, an approximation in (8) is made.
Writing

(1- (("Os;v)2 - (cosz)2)1/2

=1+ 0((Cosy)2 + (cosz)z) ©)
we obtain as a first approximation
@x —co 13 W lx=0 =0. (10
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Use of the next approximation to the square root

(1 — (cosy)? — (co8:))'1?
=1—1((co8,)* + (€o5:)*)

+0(((cosy)* + (c05:)*)*) an

yields the second approximation of the boundary condition

(o™ '8x” —co7 202 + 132 + 8,2 )Wly=o = 12)
From (10) and (12), approximations of W can be determined
on the outer boundary. Engquist and Majda, who arrived at
the same boundary conditions using a different method,
prove that these boundary conditions give well-posed initial-
boundary-value problems. They also give a third approxima-
tion that they claim to be stable. Numerical experiments, in
a two-dimensional configuration, with a difference approxi-
mation of the latter boundary condition, however, showed
instabilities for values of ¢¢8¢/6 near the maximum that is
given by (4).

For two-dimensional electromagneticfield problems, it is
possible to simplify the second approximation. Assuming that
the fields do not depend on z and are E-polarized,ie., E =
E,i, and H = H,i, + H,i,, (12) applies to £, only. Now, in
this case, we have from (1a)

HodHy, =—3,E;. (13)

Substituting (13) in (11), (8, =0), with W = E, integrating
with respect to ¢ and using £, = 0 for <0, we obtain

(asz - Co—larEz - (CO”O/Z)any)x=0 =0 (14)

which boundary condition is much simpler than (12) but still
of the same order of approximation. We observe that the first
two terms of (14) reduce to the first approximation. A similar
boundary condition for the case of H-polarization can easily
be derived.

IV. FINITE-DIFFERENCE APPROXIMATIONS OF
ABSORBING BOUNDARY CONDITIONS

In this section, we present the finite-difference approxi-
mation of the absorbing boundary conditions from Section III.
These approximations have a local truncation error of the
second order in all increments. As we have seen above, we
need absorbing boundary conditions for the E-field compo-
nents that are tangential to the boundary of interest. There-
fore, boundary conditions for the plane x = 0 are expressed in
terms of £, and E,. We shall give the discretized form of the
boundary condition for £, at this boundary, the boundary
conditions for £, and the boundary conditions on the other
planes following easily from the one for E,. The finite-differ-
ence approximation of (10) was derived using centered differ-
ences in both the space and the time increments, it has a local
truncation error of the second order in all increments. We
prefer to present the actual formulas in a form that is directly
manageable for the computer program. The first approxima-
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tion (10) for E, is discretized as follows:

E,"N0,7,k+1/2 =E,"(1,7,k+ 1/2)
+ (:08t~5
Coat +6

—E,"(0,j,k +1/2)).

E;"(1,7,k+1/2)

s)
The second approximation (12) for £, at the boundary x =0
is discretized as

Ezn+l(0,j,k + 1/2)

Coat—a

=—E""1(1,j,k+1/2) +
2 (L] 12) codr

E;""1(1,7,k+1/2)

+E"N0,k+1/2) + E."0,j,k +1/2)
C

3t + 5

+E,"(1,],k+ 1/2))+-28—t‘::§$}8—)
< (E,"0,j+ 1,k +1/2)—2E,"(0,],k + 1/2)
+E0,j — 1L, k+1/2)+E 1,j+ 1,k +1/2)
—2E,(1,j,k+ 1/2) + E,"(1,j — 1,k + 1/2)
+E,"0,],k+ 3/2) —2E,"(0,7, k + 1/2)
+E,"0,7,k—1/2) + E,"(1,], k + 3/2)

—2E,"(1,j,k+1/2)+ E,"(1,j,k— 1/2)). (16)

Finally, the second approximation (14) for the two-dimen-
sional problem is discretized as

C05t )

Ezn+1(0af)=Ezn(1,j)+ (Ezn+1(1ai)

C06t+8
HoCo
__E n 0’ 7 —— e
2O s+

H"20,7 + 1/2) = H," 20,7 — 1/2)

HH P YD) - HTR L - ()
where we have deleted the z-dependence of the fields from
our notation since the value of z is the same in all terms.
Centered differences were used for deriving (16) and (17) and
these finite-difference approximations also have a local trun-
cation error of the second order in all increments. We note
that the discretization of the first approximation (15) is identi-
cal to the discretization in [8] . The discretization of the second
approximation (16), however, differs from the one in [8].
Ours has the advantage that it can be used closer to the ver-
tices of the mesh that it requires less storage.

V.NUMERICAL RESULTS

In this section, we present numerical results that show the
efficiency of highly absorbing boundary conditions. Since we
need a relatively large-size mesh to exhibit clearly the proper-
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Fig. 2. Contour plot of the radiation pattern, after 141 time steps, of
an isotropic source located at node (5, 5) of a 35*35-node mesh
(arbitrary units).

ties of absorbing boundary conditions, we shall present results
for two-dimensional configurations only; three-dimensional
meshes of considerable size would give rise to storage require-
ments that were too large for the computer that was available
to the author at the time this research was carried out. The
insight gained by studying a two-dimensional configuration
can easily be applied to three-dimensional configurations since
the structure of (16) is the same for two- and three-dimen-
sional problems. (The two-dimensional form of (16) is ob-
tained by deleting from it the differentiations along the axis
of cylindricity.) We present results for fields that do not
depend on z and are E-polarized (i.e., E = E,i,). A square two-
dimensional mesh is used (0 <i< 34, 0 <j < 34) with absorb-
ing boundary conditions on all four sides. We have a mono-
chromatic isotropic point source of wavelength A that is
switched on at £ = 0 and we use § =6, =68, =2¢cy6z = 0.1A.
This point source is modeled by adding a term representing a
current

I,(t) = Csin (2mcyt/Ne(t) (18)
at rg = (x5, ¥s) = (i8,78) to the relevant finite-difference equa-
tion. In (18), e(¢) denotes the Heaviside unit-step function.
The results are given after 141 steps.

An isotropic point source has a circular radiation pattern
and we investigate how well this pattern is maintained on the
truncated mesh. Fig. 2 gives a contour plot of the radiation
pattern on the mesh for a point source that is located at node
@@, j) = (5, 5), which location was chosen to show, as clearly
as possible, the efficiency of highly absorbing boundary condi-
tions. The numbers in the contour plot are proportional to
the local electric-field strength.

The contour plot is given for both the first and the second
approximation. The first approximation turns out to yield
relatively poor results, especially at large distances from the
source. With the second approximation, however, an almost
circular pattern is obtained with only slight deformations at
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——— first approx.

second approx.

20

251

Fig. 3. Contour plot of the radiation pattern, after 141 time steps, of
an isotrepic source located at node (3, 3) of a 35*35-node mesh
(arbitrary units).

points near the boundaries and far away from the source.
These errors are caused by the fact that waves with grazing
incidence on a boundary are not well absorbed, but partly
reflected. For comparison, Fig. 3 gives the contour plot of
the field of the same source that is now located closer to the
boundary of the mesh, at node (i, 7) = (3, 3). A comparison
with Fig. 2 is possible since the same contour lines are given.
From Fig. 3, we observe that, near the boundary of the mesh,
the second approximation is not accurate enough for sources
this close to the boundary. It can be concluded that, on a
mesh of the given dimensions, accurate results are obtained
when the second approximation is used and when the source
of the scattered field is located at about five or more nodes
from the boundary of the mesh. With the first approximation,
less accurate results are obtained and the source of the scat-
tered field should be relatively far away from the boundary.
Since (16) is easy to implement, it is advantageous to use the
second approximation.

As to the simplified second approximation for two-dimen-
sional fields (17), we note that it gives exactly the same re-
sults as the more complicated one that follows from (16).

For the point source under consideration, the exact radi-
ated field is the solution of

(ax2 + ay2 - co—zatz)Ez = o0, (2)5(r —rs) (19)

that is rotationally symmetric around rg and that consists of
~outgoing waves. This solution is easily obtained [10] as

B0 ==Giol2m) [ 8.~ (Ur =1, 42 2eq)
0

s(r—rg> +¢)" 12 gg. (20)
In Fig. 4, this exact solution is plotted as a function of the
distance from the point source and at the same instant in time
as the results that are given in Fig. 2. For comparison we have,
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Fig. 4. A comparison of the results on the diagonal of the mesh of
Fig. 2 with the exact solution.
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Fig. 5. The domain occupied by the mesh with the obstacle, the
domain where the total field is computed, and the domain where
the scattered field is computed (two-dimensional configuration).

in Fig. 4, also given the finite-difference results that are ob-
tained on the diagonal of the mesh of Fig. 2 that passes
through the point source. It turns out that, considering the
fact that we have a relatively coarse mesh (§ = A\/10), we have
obtained accurate results.

VI. THE INCIDENT FIELD

In the present paper, we have used a point source to gener-
ate outgoing waves at the boundaries of the mesh. In practice,
the outgoing waves are not generated by a source in the mesh
but represent the scattered field £° that is caused by the
presence of an obstacle that scatters the incident field £ (the
incident field is assumed to be known.) If maximum accuracy
is desired, it is advantageous to compute the total field £ =
E* + E' rather than the scattered field [5], [9], especially
in those regions where the scattered field almost cancels the
incident field (behind or in the interior of scattering objects).
Absorbing boundary conditions, however, cannot be applied
to the total field.

To overcome this difficulty, a boundary can be introduced
that is located close to the absorbing boundaries of the mesh
(see Fig. 5.) Inside this boundary the total field is computed,
outside it the scattered field is computed, thus allowing the
application of absorbing boundary conditions. When (2) is
evaluated for the total (scattered) field at a node inside (out-
side) this boundary, but adjacent to it, the total field will
often be required from nodes that are located outside (inside)
it. For the relevant nodes, (2) is modified. When computing
the total field inside the boundary, the incident field is added
to the scattered field that is obtained from nodes outside the
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boundary and, similarly, when computing the scattered
field outside the boundary, the incident field is subtracted
from the total field obtained from inside the boundary. Since
the incident field is known exactly at any place or instant in
time the above procedure does not involve any approxima-
tions, moreover, it does not require any storage nor does it
cause any spurious wave reflection.
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Numerical Determination of Induced Currents in Humans
and Baboons Exposed to 60-Hz Electric Fields

RONALD J. SPIEGEL, MEMBER, IEEE

Abstract—In order to extropolate 60-Hz electric-field effects on
experimental animals (baboons) in terms of equivalent effects on man,
scaling relations for the induced current densities have been de-
veloped by utilizing advanced computer-modeling techniques.
Humans and baboons were modeled by a large number of small
cubical blocks that were arranged to obtain the best possible fit to the
contour of the object. Internal current densities for the models were
calculated by the solution of an integral equation for the induced
polarization at the center of each block.

Key Words—Radiation hazards, humans and baboons, induced
currents, 60-Hz fields, computer modeling.

INTRODUCTION

HE ELECTRIC POWER industry is currently developing
and studying electric transmission lines with operating
voltages exceeding 765 kV [1]. While the increased efficiency
of ultra-high-voltage lines makes them highly desirable, a pos-
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sible serious question arises as to what effects the high-strength
electric fields will have on living organisms. To help answer
this question, a preliminary study has been conducted of the
behavioral and biological effects of high-intensity 60-Hz
electric fields on baboons [2]. This study was a thorough test
of the apparatus and experimental protocols of a planned
major study of electric-field effects. Baboons were chosen as
the experimental animals primarily because they have a long
history of being an excellent physiological and behavioral
model for man.

Experimental data taken from animal experiments of this
type must be carefully considered before extrapolating the
results to humans. The most obvious biological difference is
that animals and man are of different size and shape. This
means that each will interact differently with the applied
fields, and the differences will be manifested by the magnitude
and distribution of the induced body currents.

As a first step in the extrapolation of 60-Hz electric-field
effects on experimental animals to equivalent effects on man,
it is necessary to have knowledge of the corresponding dosim-
etry for humans and animals as based upon induced current
densities. For example, scaling relations for applied electric
fields in experimental exposure facilities must be developed so
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